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Abstract J-/1

The paper p)resents a relatively comp)lete deductive system for proving brmcliug time
temIPorl p)roperties of reactive programns. No deductive system for verifying brmaching
time temIporal i)roperties has been presented before. Our (ledu(ctive system enjoys the
following advmitages. First, given a well-foired specification there is no iieed to translate it.
into a nordal-form specification since the system can handle any well-formIed specification.
Second, given a specification to be verified, the Ipoof rule to be applied is easily determined
a(cording to the top) level oi)erator of the specification. Third, the system re(luces temporal
verification to assertijoal reasoning rather than to temnporal reasoning.
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1 Introduction

Temporal logics are widely accepted aold frequently used for specifying con'current atld reactive pro-
gralns. III recivent years, Ilnaty fully auto(natic methods fo)r verifying temporal specifications have been
presented sm'ch as model dlhekers [4]. However, the scope of these methods is still very limited; the
filly autoaiiatic erictliods mainly apply to finite state programs and to special cases of infinite state
progra•is. Therefore, the it ailn tool for estaliS]isting thtat a prog'aln satisfies its temporald specification
is still that of deductive verification, using a set of axioms and inference rides.

Dechictive verification can also be aided ly the cOmputer. A deductive verification systemti calUl
easily he emnbedded in automated theorem provers, like Nuprl [5], Hol [8], Boyer-Moore [3] all t Co

[6]. An automated theorem prover is anl interac:tive environment for proof generation. It. assist.s the
development of proofs by exploring the possible proof steps, checking aMd writing internnediate results
and assembling the solution.

We present a relatively complete deductive system for verif.ing fair bralching-time temp)oral logic
specifications (fair CTL). No dedluctive verification system has been presented before for fair CTL. All
previous dediuctive systems for verifying temporal properties, e.g., [16],[9],[17],[12],[15], are concerned
only with linear temporal logic, (LTL). The previous deductive systems also suffer from the following
drawlmack. They offer a relatively complete deductive system only for normal-forin formulas. Thus,
all other IpropIerties whose expression in LTL does not fall into the restricted normal-form can be
vcrified ouly by translating them into normal-form fornmlas. The known method for tralslating aul
arbitrruy (flture) LTL formula into a normal-form is very complex ill both the time complexity of the
translation aiid the size of the resulting formula. First a tableau method is used to translate a future
formula iulto a co:•iter-free w-automnata al-u] thenl this alitomaton is tranislated into a nonral-forirm
foni-uha [11]. [18]. In contrast, our deductive system can handille anl arbitrary nesting of temIporad
Opce-'atOrcs ill a fcxiu'm1la while no normal-form is required.

Our 1deduuctive systeuIit also enjoys the followimg two advantages. First, given a specification to be
\'crified Ihe possil e riles or axionis to be applied are solely deteruitmined býy the top level olpr(•4trI f

the sjcific(atiii. Moritover, il1 utoist -Case., the next possible niile to be applied is uiiqu,,llv ,edfiii,,].
This prolerty of the deduction system is vely helpful wheit enibeddling the systelm in an autotixt, d
thorem prover. Second, all rlles in our system reduce the task of verifyiing a temporal proprrty
into subgoals that either require proving the validity of assertional formulas or the verificatiom of
simpler temporal properties. In other words, none of the generated subgoals require proving validity
of temporal formulas.

Next we describe oc)r work inl some mcre details. The deduction system proves validity of carr,:CP-
i,.e-sm focririulas of the form "P Sat p .-. f", where P is a programn, p is a IprecciIditionI given in soie
a.ssertiiodal lanigiage aid f is a fair CTL formula. A progranm is (defined as a set. of transitions. A

plog'amr step is executed by choosing noicleterministically, in a wteakly fair manmer [7], ail vciallled
tralusitiOcn for execution. The weak fairness guarantees that, every C'Most-atly elabled trazisiriti is
eventudally chosen for execution. Formulas of fair CTL are inteipreted over a ncode ill a comlp;itlif fit
tree of a proga'imn. Everiy temporal operator consists of a path pia•it.ifier together with ocn, iii,,LdI
operator. A path cpuantifier is either A for "'all fair paths" or E for "there exists a fair pami". A
moldal operator is either X fcir "next-state", G for "globally" or U, for "iutfil". A correctness foxikumlat
"P Sat p - f" is valid iff for every :ompitation tree (if P, the root node satisfies p - f, whre -
deniotes imp)lication (definled as usual).

Of special interest is the rlde for verifying the formula P Sat 1. -p EGfi. This fcrnmula specifie's 1h,4
e.xist e'nce if a. fair iniffinite pathl in tile (:cullut.atiOcL tree of P along which f) is c'olttimllously sati.li,,,I.
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We prove that. an infinite path is fair by showing that it cousists of infinitely many finite fair intervals.

A fair interval is an interval along whiC'h every" tranisition is either disabled or executed. To establish

that, we iutrodluce a proof tool for identifying the lind points of fair intervals andi in addition we

foi•nilate an inductive argument that implies infinitely many occulrrences of such end points along the

patlh (see ,page 6).
The rest. of the paper is organized as follows. In Section 2 the comiputation nllodel is preseltted.

Section 3 defines fair CTL and correctness formvulais. Section 4 presents the deduction sVsteiii and

an example is given in Section 5. In Section 6 we compiare our de(uct.ioL syst,elll with CTL model

checking amd discmss other verification approart.

2 The computation model

The 'iodel of complitation we 'olisi(ler is a fair tfaiv.sitionl systemfl ill which each transitionm r is a binaty

relat'ioni o\',,r it set. of states S. a71 T7"' is used to d!eltote that. (a'!,1" 2 ) E r. We say that at trallsitioll r

is u.n.thlcd ill a state a7 if there exists a state ("1 slulc that U7Ta'. Otherwise, T is disabled. NVe (ldelote
by Ei.(r) the set of all states in whic'h r is enabled. A progerai P over a set of states E is a set.

of tranlsitions over E. We asunie the existence of a dummy trantsition, r*, which is enabled exactly

when all other tranisitions are disabled anid which leaves the progTarit state unc'hantged. The dimntiyv

tranisition eusures that all computations of the prograr' are infinite.

Next we forrrally define the nIeaning of a program as a set of nar'ked trees. A node q is a finite

sequence over the nathural numbers. A tree T is a set of nodes dosed under the prefix operation. A

1hide ,1 is all iiInimuediate Successor of a node t if there exists a natural umuber it such that t a = q. The

root. of a tree is the elipty seIlen'ce. An edge e is a pair of nodes (t, rl) such that i is an hinmediate

sllC''ssor of ý. A path r fromi at node il is an infinite sequence ill t2... mich that .l = ,, and for Al
i _> 0, tli+l is all imnieediate su'cessor of qi. A marked tfie is a triple < T, f,, M. >, where T is a tir.

"Al', is at ful'ntioii that. llapls every niode of T to a state in E. If Af,,n() = s thenm we say that i/ is niu ' d
by N. •II, is a funtction that minaps every edge in T to a trausition of P. A mnarked tree < T..A[,,. ,I[, >

is a compLPtat.ionlL tree of P iff the set of immediate succpesors of every node il in T is x,,arked 4-Na't lv
ly the set of all states that are reachable from ,n(q, ) via the exec~ut-ion Of a single tratnsiti(I (it' P.

More for-mally, for every nolde ip in T ami(l for every state s in E and for every tranMsition r oft P:

(~(r/p), --) E r
iff

31/2 oIn immfuediatfe sa.c:e..or of 'il xfn( '_) A . tf,( I, ,.) = r

Finally, the mieaning of a programn P is the set of all ('omIMut.atiOn trees of P.

A transition r is enabled in a node rl in a comIput.ation tree < T,.M[, 3[ > iff r is •,ld ule iI

M 3ln(q). r is exer.ecuted along a path r, = il /2... of the comlutation tree iff there exists i > 0 suIth that

M,,(r1 i, t/i~l) = T. A path ir = rl, r12 ... in a computation tree of P is fair iff for every transition r tf

P, if r is c(ntinuously enabled from slmre point along r then r is infinitely often executed it(ih a '.

Note that., every finite prefix of a path cant be extended to a fair Ipath anid that every path with al

infilmite slIffix of T" executions is fair.



3 Fair CTL and correctness formulas

Assrune an ass*ertiolial language L whose formulas are interpe.ted over E. 1 A fair CTL foirnliulla is

either a formula f'om L or, -'fl, fl A f2, AXfl, EXfl, AGf 1 , EGuf, A[fUllf2], ald E[fUlif2 ], where

f, allot f2 are fair CTL formulas. Fair CTL formulas are interpreted over a node in a marked tree.

Given a itode q, a marked tree MT and a fair CTL formula f, the satisfat.tion relation MT, t/ • f is

defined lky iuichlition oin the structure of the formula. Intuitively, anl ase.rtion p in L is satisfied at at

uiode I/ iff the state that. titarks q, that is M1()), satisfies p. -,f and fi A f2 are defined( ai ulsudal. .4Nf1

(EXfl) is satisfied at. q iff every (at. lesit one) iminediate successor of / satisfies fl. AGf, (EGfl)
is satisfied at ,! iff every node in every (at. least one) fair path from rl satisfies f, . Finally, .4[fiIlf.2,
(E[f1 lUf.2]) is satisfied at q iff every (at. least one) fair path from q satisfy f/ until f2, i.e., there exists

a ikode i/ along the path that satisfies f2 mid every node from q to r!' satisfies f.. The set. of operatdirs

presented above is not xlinimal, for examnple, the operators AG and EG can be expresses in tenns (if

.414AU ld EU, respectively. We choose toc introlduce a wider set thazi llecessaiy ill order to simiplify flie

present ation of the proof titles.
A fair CTL cormlc.uess formula consists of three components: a precondition p in L, a prcig'rai P

and a fair CTL forniuila f, and is of the fornt -P Slt p f. A fornula P Sat ) - f' is interprt(ed

o'ver the ro it lode of a colclaltatiolfli tvee of P. A fair CTL correcthless formulria is 17i01 , to be (C4-1e iled

SP Sit IP - f. iff fcor every cclillit-atioln tree Of P tlie' root, Iode satisfies p - f.
Ali .is'.'•rtlaiml (:cortxi(X.:.s" forilra (COlists alt So of three cotllcOlcelits: 1) alld q iti L atnd i sa I et'

trausiti,,s r, anld is (If the fcuiu -"{,p}F{qf}!. A forunitla ý{,P}P{q}"y is ilLterprete(cd OVer a aINr (if S, .t,.S

((7, 7P) such that there exists r E r for which at Tra2 holds. An assertioudal correctness fCirnuila is

wrid, to be denoted • {Jp}r{q}, iff for every t-rauisitiion T ilk r and eve•y pair of states (a,. a.) smuh

that a(1 r 111 h)d1s: if a71  p then. a-2 H q.

4 The deduction system

In tlhis s,.,'ti,) we present ou"r deductive system. Proof lades of special interest are explained iii hlelails

and the.ir sound lness is motivated. The comI)lete.iess proof is postIploned, to Appendix A.

4.1 The nex.-rules

To verify a specification of the form P Sat 1) + AXfl, we require that. every transitiokn of the pljugi.uii

P that starts in a state satisfying p results in a state satisfying Al assertion q. And tun(remvm. if P,

cehniotes the progran left. to be executed after the execution of a single step of P then every r(,) 11li(le

of a co'pIlttation tree of Pý that satisfies q shlouIcl also satisfy f'. Since a I)ogrlun ilk o01r 1141414h has

a single co,0ntro-l point, the proglauci left. to I"' execuIteI after perfcnming a single step cf Ier-gi.,.

is th, prOgraitn itself. Therefore, we get:

11)) P{q}I
"P Sat q -. J'l

"P Sat p -- AXft

W eVe. amsoi4 e 1. /,;% eX irens i ile emlOIl |I tit) r' mitl e all th..le le s a f stat.i h es re~laiH'in.4 ror i. iit r ,vt.P Imlt hll , . ...

sy.slerr. As is kriown [19],[141, 1, shm)ild Kt lem-4r, hwhl&e the lif,'4lh~ate CKIh',11)M, litterlrelted .xyml,)b lr .ok,.. , ),

.IIt AI'd 0100T9 , 60%. 1 1)41. and ) t;,4)4s ,)wer ritegerm an .id the fixN l-lplirif . lowrrat)rs it and V.

3



To verify a specification of the forlu P Sat p - EXfi, we require that there exists a transitionl r in
P such that. T is enabled in all states satisfying p anid its execution results in a state satisfying anl
;Lasertion q. And moreover, every root no1de of a compultation tree of P that satisfies q also satisfiesfl:

Themf eis:tst T :1p -. Er(T) and {p}rfq}

"P Sat q - fI

"P Sat EXf1

To verify the negations of the above two specifications we relay on the following fair CTL validitie.s:

-,AXf -. EX-,f 1
-,EX fl - A4X-,f,

Thus we get:

P Sat p -. EX-,fl

P Sat 1) - -,AXfi

anud
P Sat p - AX-.,f

P Sat p- -,EXfl

4.2 The until-rules

Next. we present. conditions for verifying P Sat 1p "* A[I 1UI2], where 11 antd 12 are in L. Let a pIrefix

of a path in which all nodes satisfy "'2 Ite called 2-io'hiding. 1%e have to verify that "all12 -avoiditlg

pwrffixes that start in roots satisfying p are fihite anld that I/ is continuously satisfied along these
prefixes. The following verification conditions establish a well-founded inldliction on the heugilh of
the 1.2-avoiding prefixes. The indluct-ion hypothesis asssumes that all nodes along 12-avoiding p)refixes
sltisfy Some state predicate () and that a ranking futnction A is defined for all states that mark tiseo
nodes, where oS taip states into a well-foIndedi, pIatiadly ordered set (W, <). Moreover, the id (1114 i01
hypothesis assumes that the ratks defined by 6 alonlg an I2 -avoi(dilLg p)refix never ieI'tease. Ill 1le4
induction basis we deal' with the ('aSe of 12 -avoiding prefixes of length zero. We 1"16uir'e that 4'%vIy

state that satisfies p also satisfies either 1[2 or it. satisfies ob anld A is defined for that state (deuiet.elI by
is E vW):

A.41. p, -. (1.2 V (4) A (6 E W)))

Tli the induction step we require that every traiisitioii of the program that. starts in at state satli.4yilg
4P and forl which a rank iv- is defined lby 6 toSailts ilt a state that, either satisfies 12. or it sat isfie,' 'D u.itl
it is riappedi by 6 to a ramk lower or equal to iv:

AU2. {4) A (6 = ;)}P{I., V (4) A (A < ,))}

We add the requirement that every state that satisfies (P also satisfies I,:

AU3. 4D - Ii

Conditioms .4Ai1-AU3 gtaalitee that ever,'y path ill a computation tree (of P fron it aroot sat Is , i ilg p

satisfies 1 a.s long as 1.2 is nlot satisfies. To eulli'e that 12 will eventually be satisfied we rela\ ,-, i1i.

-1



fairness of the computation model, the well-foundedness of WV and the additional requirement that
for every state that satisfies b A (6 = we) there exists ani enabled transition of the program whose

execution results in a state that either satisfies 12 or satisfies b aud for which a lower rank t~hal Ii is

defined wy : I
AU4. For evei-, it; E IN then, exists r E P

(1) (4) A (6 = w,,)) -*# E,(T)
(2) {( A (6 = vv)}-r{12 V (- A (b < ,))}

The fainess of the COmlmtlation model implies that a transition that causes the ralk to decrease will

eveiitially be executed alid the well-foiindness of IN gularantees that ondy finitely iraiky tites the rank

Call lecreaSe anld therefore a i1o(le satisfying 12 must be reached. Thus, we get:

AU1 - AU4

P Sat p-) A-[1 1 112]
.i.,he..v 1, 1.2 E L

A specification P Sat p --* E[11 412], where It, 12 E L, is verifiedl by the above verification condit ions

AU1, AU3 and AU4. Condition AU2 is omitted inl or(der to relax the set of verification conditions sidli

that they only imply the existenlCe of a fair path with a finite prefix r101l ... 1( such that .(AfI(q,)) >
6(Af,1 (qr )) > ... > 6(1•,(r 4 )), qi satisfies 12 an(d every other node along this prefix satisfies 11:

AU1, AU3, AU4

P Sat p -- E[I 1 412]

inherIe It, 12 E L

To verify a Slpec'ific'at.ion of the form A[f1 Uf 2], where either fi or f2 is not in L, we (lecompo)se the

verification task into three subtask.s. One requires that every path in a comljplitation tree of P that

sta'Ils in a Wide satisfyji g 1) satisfies I, 1uitil 1.2, where both 11 and 12 are in L. The other two require

thoI ev'erv root of a coomputat.ion tree of P that. satisfies I, or 12 also satisfies f, or f.2, resplectively:

"P Sidt 1 A[11 142 ]
"P Sat I -- ft
"P SOt 12 - f2

"P Sat 1 A[f/Uf 2]

,,I,.,. 1f, L or f2 0 L.

Again the soumduesus of this rufle relies oI1 the fact that a program has a single control point and the

pr-ogmil heft to be exec'uted after perforiming one or more steps, is the program itself.

To verify a specification, (f the forn P SOt 1)- "•.4[fiUf 2 ] we relay on the following fail' CT!. \'uid
fontlila:

-,.4[f(1f12] .- (EG-'f2 V E[(--f2 )U(--f1 A -'f2)])

5



Thius we get:
P Sat p - EG-,f 2

P Sat p - E((-'f2Y)(-f, A -f2)]

P Sat --A[f 1 4f 2]

To verify a specification of the form P Sat p -# "'E[fiUf2j we observe that. there does not exist,
a fair path that satisfies fi intil f2 iff either -,fl A "f2 holds at the root or there exists an assertion
I that h1ols in evelr nolde of every path from the root 1iutil -,fl A -'f2 holds and in addition I must.
imply -,f2. Thus we get:

P Sat p - (-'f A -'f2)
or

-) -* I

"P Sat I -,f2 A AX(I V (-1,f A f2))

"P Sat 1) "- --,E[ff' Uf2

4.3 The globai-rules

Next. we present colditfions for verifying P Sat1 p- EGf1 . To prove that. a path is fair we exploit tle
following observation, takeni fr0om the completeness proof for the weak fair termination rde in [10]: a
path l 'r ill a c(mpumtat.ion tree of P is fair iff for every transitiou ri of P, either Ti is infinitely ofteni
disabled or ri is infinitely often executed along -,. Note that, along every path the duminy transition
T* is either disabled or contimnously executed froom some point on. Thus, we cali relax the above
,OIllition ,lil conchlule that a path r is fair iff for every non-dummy transition Ti, i.e., Ti is not e(plal
to r*, either ri is infinitely often disabled or ri is infinitely often exe(:uted along xr. This implies that
-r can be partitioned into infinitely many disjoint intervals of finite length, each of which colitains for
every non-dummnry transition Ti, either a state in widh Tr is disabled or a step in wlidch r is executed.
WVe call such aln interval fair. Thus, a path is fair iff it can be pIartitioned into infinitely many filnite
fair intervals.

A proof tool for ideentifying the end points of fair intervals, is introducedl next. Let. P lie a progruzn
with fi non-dmmy transitions i, .... , T," anid let Ris : --+ , 11}m be a function that riaps a st-ate
a to a lbimu'y vector of length in sn'h that dis(a)(j) = 0 iff the tratsition r- is disabled in a. Let.
U (T) stands for a vector of n zeros (ones). And for a natural number j let j lie a vector (ifm 0, Ws
except that if 1 < j < m. then the j-th element in this vector is zero. Let A lie the point wise logical
co,,jIttictioii of binary vectors. For example, let n = 3 mid dis = 101, the value of the exlprssi,,n
T/ 3 A dis, that is 111 A 110A 101, is equal to 100. We use a function Y flrom the irguai st ates I I

{0, 1}'" anid require the following proof obligations that, ensure that g = y indicates the end of at fair
interval. The condition

EG1. 1-(gE (0,11}")

rquires rtha. initially g is defined. The condition

EG2. For ve.,ir., r1 E P: {g = O}rj{y = (3 A dis)}

requires that the first step taken after the end of a fair interval results in a state in which the va'fl, of
y is reset, that is, g - (ei~u, .... ,in) where uwi = 0 iff Ti is disabled at the culnrent state or T" ]liiL ju.t

6



beelL eXeCllte Id aI(I j = 1, Otherwise. The cn(Jlitjion

EG3. For f~iri-y j rE P and! evel-Y 1-,JE (0, 1Im : f{y = 7, T-AiiOr Ig = (TvA Adis)}

requires thalt Y FUssignIS WIIj = 0 to State.e within a fair in~terral if T-i has either beein executed or has
bieen disabledl in that fair interval.

Int~rodulcing the above mrethlodl for i(Ieitifyiilg the enld points of fair intervals, we still have to prove
that there exists a path along whlich1 in~finitely Oftenl an endl of a fair interval4 is encountered:

EG4. I-gy=U
E05. P Satp E[f1U(I A fi)
EG6. P Sat I EXE~fiU(I A f)]

The coiid(itiOii FG.4 sets the connection between the satisfactfion Of I arid the n(11 p)oints Oif fair iliteilVAS.
Conditions EG5 anid EG6 ensure that. there eXist~S a p~ath1 in which 111holds inlfinitely oftenl anUl 1mo1eover
f- coiitiiiIuously holds along t001t paKth. Thus wve get:

EGI - EG6

P Sat p -~ EGfi

To verify the other global specificationLs we relay on the following fair CTL validities,

whihliiipv

"P SOt p -' -E[riue LI-if1] P Sat p -~ A [trite U-tf1 ] P Sat. p E[trne U-,f 1]

"P Sat 1) AGf1  P Sat p - -EGf 1  P Sat p) -'AGf1

The entire deduc-tive qysteui is lpleSeltedl in Figure 1.

5Example

Conisider the simple program,

7--: yr:=5v if .,<10U=
0

Th1

which hats three transitions. Tvansitionl r, increases the Value of x: by 1 and is enabled whenlever the
value of x: is stmaller than 10. Transition T2 sets y to 5 and is enabled Whenever tire value (of x1 is



bigger thalt 5 mid the value y is equal to 0. TranIsitioni r.' is the duminky transition. Next. we verify
the correctunems formula:

P Sat x:=0Ay=0--EG(x<10-.y=0)

This specification implies that, there exists aL fair computation of P in which the execution (of the
secon(d t.ralsitioii is postponeId until the first. one is not enabled aly more. Let

00 if0<X<_ 5 Vy#0
01 ifi:>5Ay=O

We prove that the premises EG1 - EG6 hohl:

"* E01. According to the defifition of g, x = 0 A y = 0 - y = 00 holds.

"* EG2. According to the defuition of g if y = 00 then 0 < x < 5 V y A 0 holds. Therefore,
tralsition Tj is either not eInabled or its execution results in a state in which y = 0c, where
c = I if x > 5 A y = 0 and c = 0 otherwise. According to the defitfition of dis, the value (of
the expression 01 A dis is Od, where d = 1 if x > 5 A y = 0 and d = 0 otherwise. Thus, ill the
resulting state y = (01 A dis) and we concluide that

{y = 00}, t{y = (o0 l•Adis)}

holds. Transition T2 is not enlabled in a state satisfying 0 < :i: < 5 V y # 0. Therefore

{y = 00}172 { = (10 A .(i)}

holds. For' tranisition: TI
{g = 00}Or. {Jy = (11 A ,zd.,)}

holds since either r.7 is not enabled or it. is enabled and in b)oth starting and resulting st;ites
dis = 00 and y = 00.

" EG3. According to the defiltition of g, y = TF" A TF $ 0 implies that y = 01 and thlns the.
co'rresponding starting state satisfies j, > 5 A y = 0. Transition Tr is either not enlabled or its
execution results in a state satisfies x > 5 A y = 0. Therefore ao'cording to the definition of y in
the resulting state 9 = 01 holds. The value of the expression 01 A01 A dis is equal to 01 since
r 2 is enablel in the resulting state and thus

{g = 0117}, {g = (01 Al 01 Z di,)}

holds. The execution of r2 from a state satisfying :j: > 5 A y = 0 resuilts in a state satisf.viiig
.X > SAy - 0 and therefore y = 00 in the resulting state. The value of the expression 01 A 10 A di.s
is equal to 00 and thus

{g = 01}r2{,y = (01 A o10A fix)}

holds. The transition r.• is not enabled in a state satisfying :x: > 5 A Y = 0 andt ther'eforv

{y = 01I}.j ly= (01 A 11 A (US)

hoIhls.

8



" EG4. Let I = (0 < x < 5 A u - 0) V (x > 10 A y 4 0). According to the definition (if g we get:

I- = 00

" EG5. Next we prove that

P Sat x = 0 Ay = 0 - E[(x < 10 y = 0)1U(I A (:i: < 10 - y = 0))]

Using first order inanilpulation the assertion (IA((x < 10 - y = 0)) cat we rewritten as (0 < .x <
.5 A V = 0) V (y #7 o :A > 10). Let ., = 0 < z < 10 A y = 0 ad W = {,rue, false } {0.. 10} wit],
lexicographical order where < false, 0 > is the minimal element. We define 6 =< y = 0, 10- x.

- .4U1..:=OAy=0--'A(i6EW).
- AU3.0<x<1OAy=0--(x<10--y=0).

- AU4. For 6 =< true, d >, where I < d < 10 we get

(1) D A 6 =< true, d > Al < d < 10- En(r1 )
(2) {f' A 6 =< tr,.e,del > Al < d < 101}7- {f A 6 =< true, d - 1 >}

For 6 =< true,O >, we get

(1) (D A l6 =< true, 0 >--i En(r2 )

(2) {J( A 6 =< true,0 >}T2{y # 0 A x > 10 A A =< f,,L,,0 >}

For 6 =< false, d >, the assertion oD A 6 =< false, d > is falve mad therefore both re(llirQ-e
ineits (1) and (2) ho1l for any transition.

"* EG6. Next we prove that

(*) P Sat I - EXE[(x < 10 - y = 0)11(I A (x < 10 y = 0))]

Recall that I = (0 < x: < 5 A U = 0) V (:i: > 10 A y 6 0) therefore (*) holds iff

(1) PSaitO<r<5Ay=0-.EXE[(x: <10---y=0O)U(IA(:i:<10--.y=0))]

holds wild

(2) P Sat:r > 10 Ay $ 0 - EXE[(x < 10 - y = 0)14(I A (x < 10 - y = 0))]

holds.

To Iprove (1) we apply the ne.xt-rule for proving EX maid get the following suhlgols:

(1.1) O<x<5Ay=O--+3x<lO

(1.2) {0<x;<5Ay=0}r,{0_:,-<6Ay=0}
(1.3) P Sat 0 < x < 6 A y = 0 -- E[( < 10 --+ y = O)U(I A (x < 10 - y = 0))]

It is easy to see that (1.1) and (1.2) hold mind (1.3) is proved using ýD andl 6 just. as in EG5.

To prove (2) we aplyl)l the rule for proving EX andl get the following subgoals:

(2.1) : > 10 A y 3 0 =* E,,(rj), inheir E,,(r.') = x > 10 A y $ 0
(2.2) {.: >1yOA #0}r.{:x>1OAy$0)
(2.3) P Sat•x > 10 A y 0 -- E[(3, < 10 -- y = 0)1(I A (: < 10 - y = 0))]

It is eamV to see that (2.1) and (2.2) ho1l wnd (2.3) is easily proved using 4, = fuivse muid .all ,'.
Wean calhoose (b and A as sudic since the precondition implies the seconud at'gmnent of t1, ilt il1

spedification, that is, ;#. > 10 A y $ 0 - I A (: < 10 - = 0).

9



6 Discussion

CTL imodel clieckinig [4] is a verification Algorithm that given at programl described its a fjillIjt esat I.

tranlsit ion graph, a state inl the prograiui, aid at formula inl propositional CTL, detennijues whet her or
niot lt(e (4mi~ilitationl tree of the p)rogr&.un, statiting at. this state, satisfies the forml-Ia. It is interestin~g

to no t ice the simiilarity anld dhifferenice betweeni the Tnodel checking approachl anl miirs.

Both nietl10ids are Sixlilitlu ill that, the verification (if a formula depends oni tie verification (of its

sulifdorulh111s. 'Moreover., tiiey are both sylitaLx directed, i.e., the nlile (or proceduire) applied iii the

%Wii ficat iol (if a fomiuiula1i is ileterTijuied by the forimnd11a's top level operator.

Oile oif lie( ilifferetices 1 etweeli thle muethodls stemls from tlie( fact that while [1] solves at leciirsive

probi lem , we suggests at mzethiod fo ir iiol-reciirsive onie. As at resullt. liiilode dlec kinig .,Ilgy-ests5 1 ii siii i.il

ruIles fo r negated forliiiiils. To determinie whet her oir niot a f Irinifla -ciD is trute ill ~i state 014 *~ v 1he Iic

(1) at this state and coxiiplenmieit. the resuilt. Dealing with a noni-recurlsive pro' ibleu. our. iet hz ii (.liiiwt

epc. ill -wenera. to get at negative aiiswer. Thus dlirect rulefs to liaille~f uIegIIAM 'Io S .ille t'.P level

hli [.1],.i moore general no~tion~ of fairness is conisideredl. Thjereforie, hlildliuig fairiiess e'it4114. Itx

sicii iaY si'p. that Iiiliiks all stalte fromz which it fair (ii~llpilitat loll si arts ( th" al dlstifvc o'

1 iropimstiml Q)). To check now that E[f111f-2] is, 11-1e illi a stat(., they\ I lie'(' thlat E1-1~ 2

I Iu i-III I hatI state'. Ill Ithis cas.e, ou Ii-Iiletliod is Simipler. Since fromz i'virv , talv' thlfi i~s at fall w.I 1k

co111pidt atioli stal tling at this State, we Canl verlify E[fiUf-2] its if nio fairniess is ((ilicel-liCl.

The caiti' if .414 is soilved inl [4] bv using -L and EG hi i ceuefrE eai lpi

on the( finiiteniess of the programz descnpiItioii. alid invlv%0\es grap~h mnmioltin.Clerl1y. A sili0itl

mewthod is not applicable to wur case. To conchide, both muethodis ale Simiilar illil( the i wa N.t'.\7 !

adlvanitage of the st nictmire oif CTL formitla~s. As expected, they dliverge ,igniif(hicawlY inlie 1111'%i T lic

exploit propert-ies of thle progrnil description.

Othe v eri fication i approma Ii that. call hatidle general li veness propert ies were tntiodli ed M in]1

alit ol nita tieo ret ic frazzework. Ini [11,[2],1131 a~ssertiomual verificat ioni coch t iollS aW le 1)1ilsentd f'.1 \"I;,-

(v iiill'. prpert ivs which areP specified by finite-state automata. Those results are ext ended Iin [201 1,
wit h pn ipe-t ies Speci fied 1by recursive ýý-aiitoitmiat a. lit (conttrast, we Specify iropert ies Inal~l t i
IlII1iit v4' ajild hligh" level t4emiipora lamigliage am1d no aultonliata is coIlistf-licteul.

Ac:know led Igmen~ ts.
We thianmk Nissitm Francez for fruIitfull discuIssions ill the- pelA-imiiinIary staiue o1f thjis ~v.i.k.
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A Relative completeness

To l)rove the relttive 'ompleteile) s of (kill- dedllctive sVstemlI we fitst l•love that there is 11o 'irti'laiity
rin the system. That. is, we prove that. every premise of every tide 'am be verified by applyinig le',, Ir',of
1114- t~han re•tuired for the verification of the goal of the rlte. To do so. we itit(od'ie ai ialqpitng t,
that mpq)s every fair CTL fonimda to a untural r'. inul)er. Theni, we show that for every ride of the f'il'v

P Sat P1 -' 4h

P Sat pn "

P Sat1, -. 4

the relation p(4i) < L,(4) holds fi)r every I < i < us.

The fmw'tiou L) is:

"* if f E L thenLl(f) = 1,

"* if f = fl A f2 then £(f) = L(fl) + t(f2),

"* if f = EXf 1 or f = AXf1 then •Jf) = L'(/f) + 1,

"* if f = .4[fllUf2 ] or f = Eifilf 2] then t'(f) = 2 x (t,(fi) + tLf2)),

"* if f = EGfl theui •4f) = 4 x e(f,) + 4,

"* if f = AGfl then jh(f) = (2 x (L'(fl))2 + 4)2

"* if f = -fl then g(f) = (L(fi ))2

HIere we (le4iotistrate the above for only one 11rie:

"P Sit p - Aitru, 14-,f

"P Sat -'EG.I

According to the defmition of L) we get:

eA[triue14"-'u]) --- 2 x (I + (+ f ,))2)

anld
&'-EC,G ) = (4 x t1f) + 4)2.

It is ea.y to sm. that L{-,EGfl ) > e(A[ ti-,e U-,fi]).
Since there is no ('ir(idarity ii the systeim the relative (cmil)letmess of thie systeto ('Mi be 11i,1%'04I

bky separately proving the relative ,oillipletellets of eVelry proof nle. WVe brinig ]lere so.lle of tilt . ,141i.
ilnteresting p)roofs.

* The assertion rule:
1' -' q

P Sat 1' -" q

For q E L
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Amsunie • P Sat p - q. Thus for evei'y computation tree of P if the root. node satisfies p theln it.
.sttisfies q as well. Since every state in the state spare (,aL serve as a root. node for a comlp•ttitn
tree of P we call conclude H p -- q.

"* The AX rule:
P Sat q ft
fp)P(,q}

P Sat p -- AXf 1

Asumne J P Sat p -- A.Xf 1 . Thus for every (cOmlutation tree of P if the root node ql satisfies
p then every immlediate mu:cessor of q satisfie fl. Let q be all asserion that holds exac-tly at.
all immediate muc-cessors of root. nodes that, satisfy p. The prograln left to be executed after the
execution of airy tralsition from P is P it.slf, therefore, H P Sat q - fl. Moreover, for every
r E P aid every pair of states (717,i (2) sldlt that to 72 holds: if t71  p then 02 I= q, that. is,
kb {))P{Q}.

"* The -,AX rule:
P Sat EX-Af1

P Sat -iAXfl

The relative 'omipleteness of this rule is a con.eqteuce of the vdidity of the fair CTL formila:

EX-'fi .- -,AXf,

First direction, the formula EX-'f1 holds at a node q iln a marked tree MT iff there exis.ts
an imieliate successor ril of ,! such that ,iu does not satisfy fl. Therefiore not Zall imwediate
su'cessorsl* of rl satisfy fl, that is MT, q H -,AXfl. The ".cond direction is also easy, omitted
here.

"* The -AU rule:
P Sat p - EG- 2f
or"

"P Sat p -. E[(-'f2 )4(-'f, A -'f2)]

"P Sat -A[ftUf2]
Again, the relative coinpletenems of this rule is a consequpence of the validity of the fair CTL
forlmula:

(EGQ-f 2 ) V (E[(-'f 2)U(-f•f A -f2)]) - -A[fjI/f 2]

First direction, the finrula (E "-,f2 ) V (E[(-,f)U(-",fl A -"f2)1) holds at a node q in a miiw'ked
tree UT iff either there exists a fair pat-h from Ilin whidc "f2 contiimiously holds or there exists
a fair path from I/ sluch that 'f2 holds in, an initial prefix of that path mntil --fl A --,fl hhols.
Thu.s we c'al cmhulude that. there exists a fair path from i, in which f1 lUf 2 does not hold, that
is, MT, Yi H -,A[filff 2 j. Using similar consideration the second direction cmt also be proved.

* The Eg rule:
EGI - EG6

P Sat p -" EGf1
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Assume • P Sat 1) - EGfj. Thus for every computation tree of P if the root node satisfies 1)
then there exists a fair path that continuously satisfy fl . We translate P into another prog~rali

P' by ad(ling to P an history (auxiliary) variable h. Initially, the value of h is the emijty see(jnelce
,. Every transition Tj in P is translated into

j 11 h :=Ih o a j

That is, the state at. which rj is executed (i.e., (7) and the iu(dex ummber of rj (i.e., j) are
concatenat(ed to h.

Let T be the set of all computation trees of P' such that their root node is marked by a state
satisfying p A h - c

For every state a that marks a node in a tree in T we define the vahle of the funtctiont y as
follows:

- The states that mark root nodes are rnapped ly y to the vector T.

- If a node q is marked by a and g(a) =- T,, where Tv # U, then every state (7' that. marks at
immediate successor i' of rl is mapped by g to Tu./AA di.'s, where j is s.t. Ah.(,, q') = rj
mdu dis is evaluated at the state A'in(r).

- If a node q is marked iwy a alldt g() = then every state a' that marks an immnediate
successor r/ of 1/ is inapped lky Y to j A dis, where j is s.t. Ah.(r, q') = T1 MAt diS is
evaluated at the state Mf(r/').

The above partial fiuction g is well-defined since every two states that mark nodes in T (of
either different trees or of the samne tree) are different since h has different values.

We definte I to be the set of all states that g imaps to U. Next we prove that the premises

EG1 - EG6 ho1l for the above g and I and the preconditiomn p A h = .

- EG1. Every state that satisfies p A h = c marks a root node of one of the trees in T awl
every sn.'h state is also mappedo by g to 1, therefore

Sph=A -- (9 E {0,1}m)

- EG2. According to the definition of 9:

For every Tj E Pý : { 5} = Tj{ = (3 A dis)}

- EG3. Again arcording to the definition of 9:

For cvpi-y Ti E P' un.m evnery R-1 E {0, 11" : g Tv71 All #F }Tj{ (it-, A1Ž dis

- EG4. Immediate from the defiuition of I we get

- EG5 - EG6. Assuming the relative comIpleteness of the other rldes it is sufficient to I""ve
that, conditions EG5 - EG6 are semantically time. By the initial assumnption we know fliat
in every comnlutation tree of P' that starts in a state satisfying p A h =r- there exists it f.tir

lpath that continuously satisfy fl. According to the definition of I and g and the obscri .it i's,
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that every fair path can be divided into infinity many fair intervals we cam conclude that I
holds infiuitely mMly times in that. fair path. Therefore,

SP Sat p -+ E[flU(I A f,1)

Mid
SP Sat I - EXE[fU(IA f,)].

* The basic-AU rule:
AU1 - AU4

P Sat p -"* A[IiUI 2]

where 11, 12 E L

Assume ý= P Sat p -+ A[I 1 I2]. Given a cOlmptation tree. MT' =< 7", Mn, A. > of P that
st.arts ill a root nolde ?/p satisfying p (i.e., Ms,[(qol) • p) we know that every fair path fi',om
1,0 satisfies 1111 2. To prove the relative completeness of the rile we have to find 1at aussertion
(1,-a well-founded, partiadly ordered set (W, <) and a partia raniking function b siedh that the
premises AU1. - AU4. hold.

We start by tnicating MT' into a smaller tree MT =< T, Mf, M.i' > ill the following way.
Every fair path from the root is tnicated exactly after the first niode that. satisfies 12.

According to the asumlpi)tioiL • P Sat Is -"+ A.11 1 1.2] we know that. MT haIs either infinite infair
paths or finite paths in which all intermediate nodes satisfy 11 and the leof iodles (nodes that
have no successors) satisfy 1.-. Next we consftruct maotlher marked tree that will have only finite

paths. First we need some definitions.

A path 7r is r-avoiding if anid ody if r is enabled at every node in 7,anMd IoreoVer T is 14t
exenited along ,r. A CONEr(q) is tile set of all nodes in MT residing on infinite r-aVoidiimg
paths starting from the node q. r is called the CONE s dimtive. A path r ill MT is learm,,y
a CONE,(Y1 ) at a node r1i if rl is in rr madl ll also belongs to CONE,(q) aid the node whic'h
inmmehdiately fofllows f/ in 7r (hoes not behlog to CONE'(f,).

Next we inductively define the Constiniction of another marked tree, to be denoted MT' =<
T*, A,•, A,'• >. The fiuict.ion fI mnaps each node of T* to a subset of T mind the fimnctioim .1[i
maps eamth elge of T* to a trmtsition Of P.

At the base step we define the value of M* for the root of the new tree MT*. In the iohwimtion
step we a.•mne that the subtree of MT* of depth n. is already built. We define for eact ledf I "
of depth n the set of its immediate successors ill ,4& in T*. VW;e Aso define for emach smlcce.,,.r
4i of 4 the value of ,*(4j) Mid thle value of 1, (4,4 1).

To define the base midl the inductiol step) we need a funtctioln RT : T* - T which maps emch

node in T* to a node in T. This function is Aso definel inductively. Let rol mid ýo denlote tiht-
roots of MT and MT*, respectively.

Base Step: If there exists in MT a r-avoiding path starting from tile root qo for soimi. r E P
thett ,/(4,i) = CONE,(qn). Else, =,(4o) = {,/}. Ih both ca.es we define RT(4O) = 'io.

',' , Ile .e,;I fid ),J40Ej or M T a'r deri ol'a .4 by the s4ymbol.4 11J, ?Ai, . -... 11 ' .allI. sh. 4o14 0r 1 lI'o I .P. %Va ."411411441'.i l

syrnom ,f t? .... or f1.



Induction Step: Let. 4 be a leaf oif (lepth n and let. RT(4) = .We addl irmniediate siii-essors
to 4a(:COr(lilng to the followinig claulses:

-If M1.*(t) = CONE7 -(rI) theni for every p~ath -,, in MT leaving CONE-,([) we aMd to 4 all
jixiiielliate Successor f, in MT* and( we (leflule RT(41 ) = ,p , where fl, is the first. nlode inll
after 7, leaves CONE,(j) andl Al,.(t, 4i )= A(, 1

1 , ii), where q' is the predlecessor of tj ill~

-If M,(4 ={q where ri is nxot. a leaf in MT we addl for every irineieliat~e miccessor ,i of tq
anl iltzeumiate successor ti to t. W~e (lefine RT(41 ) = ril andI 1'.I(t, 41 h~,h

-If fill4 ={q where rl is a leaf int MT thenI t is a leaf iln MT* and RT(4)= .

Next., we dlefinie AI,*, for all io(1es add~edI in Steil n + I of the induiction. Let 4 lbe siich a iiote.
Two cases:

- If there is iio r-avoi(Iing 1path starting fromt RT(t) inl MT for any r E P thkeni3(4
{RT(t))}.

- Otherwise., -onxidler the Set S Oif -al tranLsitions, r, for whdih there is an ixafin~ite T-a%'0idilag

path stArtintg fromn RT(t) in MT. Let r, he the tr-misitio i~icosent least4 rtNeently. possible
not at. all, as a CONE'S direc-tive alonig the setiuence M,(n) ,(4 . iI(1 1 *V-), Where
4oti . .. tn-i4 is the p)ath fromt the root to( t in MT'. W~e define AM,(4) = CONE,, (RT(4)).
lit the case there are more than one slich traiwitionis in S the transition with the siriallest.
iin(Iex (assume All transitio1ns iln P are ini(leXe(l) is chOseni.

Lemma A.1:

- For every n1ode 4 inl MT*, RT(f) E AMn(4).

- For every two ntodest mi ad 42 ini MT*, AMn(4 1 ) n Mn(4 2 )=

- UT' covers MT, i.e., every ntode of MT belotigs to somte'lAf'(t). Where 4 is a iiodle (if Aff*.

Proof:

- Accordfing to the dlefinition of MT*, AMn(4) is either f{RT(4)} or CONEV, (RT(f)) ill bot hi
cases RT(t) E Mln(t).

- Accordfing to the oleflinition oif MT*, at. every Stepl of the hinduction A'f,*(t) c'Olit~lliS 110(14S

of To that, are not inudli~ed hin ay previously olefinetl Af,'(t'). Moreover, if 4x WAn 42 ar-e

aldelel to MT* in the saxne induiction Steil then RT(41 ) adI .RT(42 ) (lo niot. residle (iii a

commfon path in T. Therefore atccoroling to the dlefinlitiont Of Afn* Rad the tree Striic'tiiie of

T, Mftl(t4i) nlM,(4 2) = 6.

- Accorflizig to the ileffintion of MT*, the root of MT* covers the root. of MT antl inl the4

illoluctionl Step, givenl at n1ole 4, allureda scsos ini T of niodes ill 3I,'(4) are (0v1eleI.

Lemma A.2: Th~e tree MT' it; well-foundi~ed, i.e., conitainls finite pathls onlly.
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Proof: Ammune there exists an infinite path Ir'= -otj ... in MT*. According to the definition
of the function RT the nodes RT(t0 ), RT(t1 ),... are nodes in MT. Moreover, according to the

definition of MT* there exists a path r - qn= i ... in MT such that for every i > 0, RT(4i+,)
belongs to Tr Wil it appears in ir after, but not necessaily iminnediately after, RT(4i). Since tile

sequence RT(to), RT(t1 ),... is iiLfinite, r is also infinite and thus, unfair.

Therefore, there a'e severd (at lea.e one) trasLSitions such that. frolIl so1e p)Oiit (111 in 7;tre
contliintouisly enabled bhut are itever selected for exe(uttion. Let. T be mich a tramsition with tile
smallest index and let. ri = RT(•j)qI(1ki+l ... le a suffix Of r whidc is T-avoidiing WiI whiCh start.s

from RT(ti).

Two possibilities:

- r is not selected as a CONE's directive along af,(4o), .cii(41 ) . , ) then o a,,,lding
to the definition of MT', MJ,(tj) = CONE7 (RT(4i)).

- r is selected ais a CONE's directive along M,,(IN), M,1(4i) .... -l, (4 1-) then according to

the definition of MT* there exists j > i such that. r is least. recently selected ais a CONE's
directive along Mm(in),M,•(4 1)..., Ai,(4p-i) and thus M,(4) = CONE,(RT(tJ )).

Let k denote i if tile first case holds mid j otherwise.. In both cases, the infinite tail of r which
is r-avoiding is contained in CONE,(R7T('(.)). Therefore, all the nodes RT(t-.+1 ), RT(&A-+2 ),...
are contained in l ,l(&), a comtradiction to Lernmrra B.1. 0

Based on the proper•.ies of MT* p)•oved inl Lemmas B.1 mid B.2 we next continue the AU-i-ihi

completeness proof. Both trees MT ansl MT" are c€onstructed for a specific initial state c7i

that. satisfies p, i.e., the root. node of MT is mapped by M1, to (7g. In order to get rid (,f the

depelndemy of the trees oi lan we combine all trees MT such that. their root. node is mapped,41
to a statte satisfying jp into an infinitmav tree W =< , >. A new root is a(hhed atid
its inixiaediate succe.sso.s are all the trees MT s.t. Atfn(ijo) • 1p. Similarity we c(mbIine all ,IT*

trees into an infinitmar well-founded tree MT =< T', MI, ,. >.

Next, the nodes of MT* are ranked by countable ordinals. All leaves are ranked with 0). an
interniediatoe node is ranked with the successor of the leastt upper bo1)11( of the ranks (if its
immediate successo~rS. In order to rank nodles with a unique rank a nk-.shift is performedI. T."I

p(t) denote the rank defined for node t by tfle above procedure.

Let Q be the set of all nodes in W77 that reside on finite paths and M'e nor leaves ueiit her 1l1

root of "W7. We definle 0 to be the asser•tion satisfied bky exactly all states that mark the nhodes

in Q, that is:
45 = al1j : 7 = M,(rj) A ̂q E Q}

We defille the rnmking fiunction b to be:

(a) = -if 3D : B #6 A D CTA(tED(7())) A si = mi,,( U e(c))

Next we show that the premises AUI. - AU4. hold for ¢ and b above.

17



AU1. According to the coustnittion of W all states that. satisfy p mark at lea.t one w,,ide
in •-7. Moreover, every state that. satisfy 1) either muark a inode in Q (thus it satisfies 4)

or a lef of M (recall that every leaf q in MW satisfies M,',n(q) ý '2) therefore

H1,- - ý v 12

Moreover, MT* covers MW and therefore the rmaking function A is defined for every state

that. mark a lnode in --. I particular, all states ill p mark nloes in MT and thus

H 1 - (b E W)

- AU2. Fr'om every state a that satisfies I Mad b(a) = w the execiltioln of any trantsitioln fronli
p lemls to a state that mark either a leaf of W •nd therefore 12 is satisfied or it leads to a
state that. mark ma intental] notle (niot a leaf) tI of MT. Sinye every finite prefix of a path
can be extended to a fair path r/ G Q and therefore 4lý(l) • 4. Thu.s,

{0 A (6 = iv)}PJ{I2 V4}

Moreover, aM('or(ling to the definition of MT* if a miarks 4 in T* theui alty trantsiti(nk 4f P
lemls to a state that. either mark 4 or mTark am immehdiat.e su'ccessor of 4 ald therefore

{t A (b = ,)}P{(6 < ,,)}

- .4.1,3. According to the coustrzictiou of M7 and the definition of Q A•l Iodes in Q aire
Muarked bky states satisfying It therefore

AU4. Given tv C W if there does not exist a state ay such that. a H u Wid (r(a) = ir theu•

$= 0 A (6 = w,') *f 'aLbe mid therefore both condit.ions in AU4. hold vacuously.
hI there exists a state a sudc that. a $ aDmd 6(a) = i; then 34 E MT' siidh that i,(:) = i"

Mad a 6 ' ')). Consider two cases:

Case 1: 7r*(4) = CONE, CRC()).
According to the definitiomi (if CONE,, r is enabled in all states a' such that

a' E M,_,(CONE,(RT(4)) therefore a H En(r) and we conclude

H (I A (b = iv)) --. Er,(,)

Accordlng to the definition of CONE, every r-move leaves CONE 7 (RT(4)) mad therefore a
r-niove reaches mt inimediate successor 4 of 4 in •T•'. Since the nodes in MT* are raukd

leaves uIp we know ('44) < L'(4). Thus,

$ A (6 = ,)},{6 < al

Morpover, if the r-muove rea-hes a leaf of "T then the resulting state satisfies 12 ollierwi..se

it satisfies 4. Thus,

{4' A (6A ir)}r{I12 V 4')

Case 2: T.(() = RT(4).
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hI this ca.se, a = '•(RT(•)). 4' $ implies that 3r: a' = : 7 (q) A r/ E Q therefore ,q and
RT(f) are roots to identi(cal subtreps of WT and this RT(t) E Q. Thus, RT(ý) is not a
leaf in HT and there exists r sudi that, a' En(r) Mad we v'ohnde

(4 A(A = u,)) -- E,(r)
Moreover, the r-rnove rem'hes an imnroediate sluccesor ' of . ii MT and we know L'(• ) <

{A A (6 = ,)}r{. < ,}

If the r-nfove remd•es a leaf of W-T then the resulting state satisfies 12 otherwise it satisfies

0. Thus,
{14 A (b = w,)}I{12 V 1}
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P Sat p-.q HP Sat p - -q

Fo r qE T. For q E f

"PSat p- fi P.9atpi -1 P.9*t- -'I'
"f PSat p-..!:2 P Sat P-j-..f

"PSoilp - (Ii A f-) P Sat (PI v pj) .f P Sat p - (iA f-j)

P Sat q - Af a Af

P a q-H P Sat p - A,-fi

PPa SatpA E.fi P Sat p -- AFNfi

"P Sat q .- if H
P Sat p C-AX-f

"~~~ ~ ~ Sat p -AV,1hIn

Al-A14P Satt 1 -A[-1f'

P Sat p -- A If, 14 r.]

P Sat p - EA firifJ] P Sa p -(flA"2

inhe.re, fj1 . or f- .9 L. p , -rf-:) (fA-f

A 1I, A-13 A 114 P Sat p -~ -AEVfI~f-j]

P Sas p A[FIflUT:,
*ph~e.r,, r., e* r..

P a frs.1-lIP Sat p~ --'te14f

P Sat p -lj] PPSat p -(-fAfj)

P Xa 71- . -u., orf.PSt tit ff

A 111, A 11.9, AP1 Sat p - -'F f1  f l~

Figure 1:, Th2 Enlil qUt


